Cloud Contribution
Who Drove #43?
NASCAR LIBRARY

• 300 hours a week of new content
• 1% of new footage is used the week acquired

For purposes of this presentation we are only discussing video. Should we include audio, our archive would surpass 760,000 hours of content
Should we move our entire library to the Cloud?
Where Do We Use Our Content?

- Live Production
- Post Production
- Live Steaming
- Logging
- Officiating

Content (camera source).future
Current High Level Workflow - Library

Acquisition
Primary Sources
- File Based Cameras - Cineo / Alexa / GoPro
- Live Footage - Broadcast feeds / Stem Audio

Secondary Sources
- Linear Tape - Historical Archives

Ingest
Media Operator
- Data Transfer (IP / Serial)
- ASI (Satellite / Fiber)
- Manual Ingest

Asset Management - Reach Engine
- Elasticsearch - Search Engine
- PostgreSQL - Asset Metadata
- MongoDB - Asset Metadata

Generated Files
- Mezzanine - Apple ProRes @ 100mb
- Edit Proxy - H.264 @ 2.5mb
- Streaming Proxy - H.264 @ 2.5mb
- Audio Proxy - MP3 @ 64kb
- Thumbnail Image - jpg @ 128 x 256
- Thumbnail Video - jpg @ 128 x 256

On-Site Storage
- 'Online' Storage - SNFS Disk
- 'Nearline' Storage - SNFS Nearline Disk
- 'Cold' Storage - Robust w/o LTO-6 Tapes
- 'Proxy' Storage - NFS/VMware Primary Disk

Off-Site Storage
- 'Warehouse'
- 'Cold' Storage - LTO-4 & LTO-6 Tape

Current Telestream Cluster contains 13 nodes

© 2018 by the Society of Motion Picture and Television Engineers®, Inc. (SMPTE®)
Current High Level Workflow - Streaming
Can we be more efficient?
Cloud Contribution - High Level Workflow

Encoded Video Stream → The Internet → Cloud Platform

- RTP Stream → Object Detection
- HLS Stream → Content Delivery Network
- Mezzanine Archive → Nearline Storage
- RTP Stream → Officiating Software
- Future Formats → Future Software
Cloud Contribution – The Constraints

Bandwidth

Latency

Quality
How it works – Option 1

• Encode as HEVC
• Deliver as RTP
How it works – Option 2

• Encode as HEVC
• Deliver as TIFO
Quality - Signal To Noise Ratio

$$\text{SNR} = \frac{P_{\text{signal}}}{P_{\text{noise}}}$$
Quality - Signal To Noise Ratio

Apple ProRes @ 100
- 720P @59.94 -

HEVC @ 33mb
- 720P @59.94 -

Apple ProRes 100
- 720P @59.94 -

SNR >= 1/2 DB ✅
Open Architecture
Detailed Workflow – Delivery Times

- Ground Encoder to Cloud Encoder = 500 milliseconds
- Ground Encoder to Proxy = 1 to 2 seconds
- Ground Encoder to Mezzanine = 1 to 2 seconds
- Ground Encoder to Fan (HLS) = 4 to 9 seconds
- Ground Encoder to ML = < 1 second
Advantages of Cloud Contribution

• More efficient use of bandwidth from event (track)
• Trigger multiple workflows from one source
 • Reduce staff?
 • Reduce ability for mistakes?
• Reduce CapEx
• Allow future workflows/deliverables by harnessing the Cloud
Questions?