UHD-SDI Standards Overview – Towards a Hierarchy of SDI data Rates

John Hudson
Semtech Corporation – Gennum Products Group
UHD – IT’S HERE – IT’S GREAT…..but what is it?

UHD = HR+HFR+HDR

HR (High Resolution) - Big Images
- 1080-line -> 2160-line UHDTV1 -> 4320-line UHDTV2 “8k”
- 2k D-Cinema -> 4k D-Cinema

HFR (Higher Frame Rate)
- Higher spatial resolution needs higher frame rates to control motion blur
 - 25/30 fps -> 50/60 fps -> 100/120 fps
 - 24 fps -> 48 fps -> 96fps -> 100/120 fps

HDR (High Dynamic Range) & wider color Gamut
- At least 10 or 12 bits for color depth
- 22.2 channel surround sound audio
- Might be Stereoscopic 3D……..
UHD – IT’S HERE – IT’S GREAT…..but where is it [defined]?

SMPTE ST 2036-xx
- ST 2036-1 Ultra High Definition – Image Parameter Values for Program production

IRU-R BT.2020
- Parameter values for ultra-high definition television systems for production and international programme exchange

ST 2048-1 D-Cinema production image formats
- 2048 1080 and 4096 2160 Digital Cinematography Production Image Formats FS/709

SMPTE TC 24TB UHDTV Ecosystem Study group report
UHD – IT’S HERE – IT’S GREAT…..but when is it?

UHD TVs Are Available

• Direct view TVs are coming down in size and price
• Is a race to the bottom good or bad?

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Model</th>
<th>Size</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seiki</td>
<td>SE39UY04</td>
<td>39-inch</td>
<td>$699</td>
</tr>
<tr>
<td>Seiki</td>
<td>SE50UY04 (review)</td>
<td>50-inch</td>
<td>$966</td>
</tr>
<tr>
<td>TCL</td>
<td>LE50UHDE5691</td>
<td>50-inch</td>
<td>$999</td>
</tr>
<tr>
<td>Seiki</td>
<td>SE65UY04</td>
<td>65-inch</td>
<td>$2,999</td>
</tr>
<tr>
<td>Sony</td>
<td>XBR-55X850A</td>
<td>55-inch</td>
<td>$3,498</td>
</tr>
<tr>
<td>Samsung</td>
<td>UN55F9000</td>
<td>55-inch</td>
<td>$3,498</td>
</tr>
<tr>
<td>LG</td>
<td>55LA9650</td>
<td>55-inch</td>
<td>$3,499</td>
</tr>
<tr>
<td>Toshiba</td>
<td>S8L9300U</td>
<td>58-inch</td>
<td>$3,756</td>
</tr>
<tr>
<td>Sony</td>
<td>XBR-55X900A</td>
<td>55-inch</td>
<td>$3,998</td>
</tr>
<tr>
<td>LG</td>
<td>55LA9700</td>
<td>55-inch</td>
<td>$4,299</td>
</tr>
<tr>
<td>Sony</td>
<td>XBR-65X850A</td>
<td>65-inch</td>
<td>$4,998</td>
</tr>
<tr>
<td>Samsung</td>
<td>UN65F9000</td>
<td>65-inch</td>
<td>$4,998</td>
</tr>
<tr>
<td>LG</td>
<td>65LA9650</td>
<td>65-inch</td>
<td>$4,999</td>
</tr>
<tr>
<td>Toshiba</td>
<td>65L9300U</td>
<td>65-inch</td>
<td>$5,396</td>
</tr>
<tr>
<td>Sony</td>
<td>XBR-65X900A</td>
<td>65-inch</td>
<td>$5,498</td>
</tr>
<tr>
<td>Panasonic</td>
<td>TC-LE55WT600</td>
<td>65-inch</td>
<td>$5,499</td>
</tr>
<tr>
<td>Sharp</td>
<td>LC-70UD1U</td>
<td>70-inch</td>
<td>$5,997</td>
</tr>
<tr>
<td>LG</td>
<td>65LA9700</td>
<td>65-inch</td>
<td>$6,499</td>
</tr>
<tr>
<td>Sony</td>
<td>VPL-VW600ES</td>
<td>projector</td>
<td>$14,999</td>
</tr>
<tr>
<td>LG</td>
<td>84LM9600</td>
<td>84-inch</td>
<td>$16,999</td>
</tr>
<tr>
<td>Toshiba</td>
<td>SUL9300U</td>
<td>84-inch</td>
<td>$16,999</td>
</tr>
<tr>
<td>Sony</td>
<td>XBR-84X900</td>
<td>84-inch</td>
<td>$24,999</td>
</tr>
<tr>
<td>Sony</td>
<td>VPL-VW1100ES</td>
<td>projector</td>
<td>$27,999</td>
</tr>
<tr>
<td>Samsung</td>
<td>UN8559</td>
<td>85-inch</td>
<td>$39,999</td>
</tr>
</tbody>
</table>

Source: Cnet.com
IHS UHD Forecast

Suppliers are very aggressive for UHD products, but market growth will be limited by insufficient content, inefficient production, high price and insufficient capacity

• Penetration into the TV panel market is 1% in 2013, but rising to over 8% in 2017
UHD – IT’S HERE – IT’S GREAT…..but when is it?

HDMI 2.0 – Increases data rate from 10.2Gb/s to 17.9Gb/s
Will allow UHD, 10-bit, 60fps, 4:4:4 content over a single cable
 – HDMI 1.4b which is available on all first generation UHD TVs limited to 4kp30

Only Panasonic UHD has HDMI 2.0 built in now
 – Uses new silicon

Sony and Toshiba have announced firmware upgrades by end of year
 – Uses HDMI1.4b to support UHD, 8-bit, 60 fps at 4:2:0

Samsung uses outboard box and a proprietary connection for 60p content
Expect all major TV makers to add HDMI 2.0 to all 2014 models.
UHD – IT’S HERE – IT’S GREAT…..but *when* is it?

4k Home Theatres and Monitors

- **Home Theater**
 - Slim 3
 - Display Development
 - JVC
 - Sony
 - Others

- **Monitors**
 - Asus
 - Sharp
 - Dell
 - Acer
 - Others

PCs

- Graphics cards from nvidia, others

Laptops

- 15.6” UHD panel production from Sharp

Tablets

- Panasonic 20” for professionals

Game Consoles

- PS4 playback of 4k video but not games
- Xbox One – not clear but probably similar

Media Servers

- RED RAY; Sony, Nanotech, others?

Upscaling TVs

Set top boxes

- Only prototypes
UHD – IT’S HERE – IT’S GREAT…..but when is it?

Smartphones with 4k recording
 – Sony Xperia i1(C690X)
 – Acer Liquid S2

Digital Still Cameras

Camcorders
 – JVC <$5,000
 – Sony <$4,500

Android 4.3 supports UHD

Qualcomm Snapdragon 800 chip
 – Can record and play back 4k video
UHD – IT’S HERE – IT’S GREAT…..but when is it?

Download to media server
- Sony will offer ~70 titles by year end

Over the top
- Netflix & others planning to start next year
- TV brands may offer too

Satellite
- Trial and one-offs
- Regular service in 2014?

Over the Air
- Not for a while

Cable
- In Discussion

Very little native content available today
UHD – IT’S HERE – IT’S GREAT…..but *when* is it?

- NHK will showcase SUPER Hi-VISION at big events such as the Olympic Games.
- NHK will study applications of SUPER Hi-VISION to fields other than broadcasting, such as cinema and medicine.

- London Olympic Games in 2012
 - Public viewing in the UK, Japan, and the USA
- Brazil FIFA world Cup 2014
 - Public viewing in Japan, the USA, and possibly Europe
- Rio de Janeiro Olympic Games in 2016
 - Public viewing in Japan, the USA, and possibly Europe
 - Full-spec SUPER Hi-VISION format
- Olympic Games in 2020 (Tokyo)
 - Experimental broadcasting using full-spec SUPER Hi-VISION equipment
UHD – IT’S HERE – IT’S GREAT…..but when is it?

<table>
<thead>
<tr>
<th>UHDTV Phase</th>
<th>“UHD-0”</th>
<th>“UHD-1”</th>
<th>“UHD-2”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Video resolution</td>
<td>3840 x 2160</td>
<td>1920 x 1080</td>
<td>3840 x 2160</td>
</tr>
<tr>
<td>Frame rate</td>
<td>p50 / p60</td>
<td>p100 / p120</td>
<td>p100 / p120</td>
</tr>
<tr>
<td>Bit depth</td>
<td>10</td>
<td>10</td>
<td>10, 12, 14 ?</td>
</tr>
<tr>
<td>Color Gamut</td>
<td>BT.709</td>
<td>BT.2020 profile</td>
<td>Full(er) BT.2020 ?</td>
</tr>
<tr>
<td>High Dynamic range</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
UHDTV Timelines / on air broadcast

Tokyo Olympics

Rio de Janeiro Olympic Games

Brazil World Cup
NHK UHDTV Timelines on air / trial broadcasts
Meanwhile in International Standards land…..

240Gb/s Interface based on 24 lanes of multi-mode fiber at 10.692Gb/s per lane
Meanwhile in International Standards land.....

15Gb/s Interface based on 16 wavelength DWDM over a single single-mode fiber at 10.692Gb/s per wavelength
Meanwhile in International Standards land…..
A new Working Group in SMPTE is tasked with continuing the evolution of SDI:

TC-32NF-70 WG UHD-SDI Interfaces

Proponents are broadcasters, equipment manufacturers and semiconductor manufacturers
Arguments could be made for any rate between 6Gb/s and 192Gb/s.

Next Generation SDI – Is There an Obvious Sweet Spot ?

<table>
<thead>
<tr>
<th>Data Rate Gb/s</th>
<th>1920 & 2048 x 1080 line</th>
<th>3840 & 4096 x 2160 line</th>
<th>7680 x 4320 line</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Single</td>
<td>Stereo 3D</td>
<td>Single</td>
</tr>
<tr>
<td>High Frame Rate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4:2:2 / 10-bit</td>
<td>6</td>
<td>4:2:2 / 10-bit</td>
</tr>
<tr>
<td>Mid Frame Rate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4:2:2 / 10-bit</td>
<td>3</td>
<td>4:2:2 / 10-bit</td>
</tr>
<tr>
<td>Low Frame Rate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ 30 fps</td>
<td>4:4:4 / 12-bit</td>
<td>3</td>
<td>4:2:2 / 10-bit</td>
</tr>
<tr>
<td></td>
<td>4:2:2 / 10-bit</td>
<td>1.5</td>
<td>4:2:2 / 10-bit</td>
</tr>
</tbody>
</table>

- **High Frame Rate:** 60 – 120 fps
- **Mid Frame Rate:** 30 – 60 fps
- **Low Frame Rate:** ≤ 30 fps

- **Data Rates:**
 - 6Gb/s
 - 12Gb/s
 - 24Gb/s
 - 48Gb/s
 - 96Gb/s
 - 192Gb/s

- **Frame Rates:**
 - High Frame Rate: 60 – 120 fps
 - Mid Frame Rate: 30 – 60 fps
 - Low Frame Rate: ≤ 30 fps

- **Frame Rates:**
 - Mid Frame Rate: 30 – 60 fps
 - Low Frame Rate: ≤ 30 fps
A Hierarchy of Data Rates

What if we could allow for simple cost effective migration of infrastructure over time

Chose the right data rate for the desired format and the infrastructure?

And navigate easily to other rates when needed

<table>
<thead>
<tr>
<th>Data Rate Gb/s</th>
<th>1920 & 2048 x 1080 line</th>
<th>3840 & 4096 x 2160 line</th>
<th>7680 x 4320 line</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Single</td>
<td>Stereo 3D</td>
<td>Single</td>
</tr>
<tr>
<td>High Frame Rate</td>
<td>60 – 120 fps</td>
<td>4:4:4 / 12-bit</td>
<td>12</td>
</tr>
<tr>
<td>Mid Frame Rate</td>
<td>30 – 60 fps</td>
<td>4:4:4 / 12-bit</td>
<td>6</td>
</tr>
<tr>
<td>Low Frame Rate</td>
<td>≤ 30 fps</td>
<td>4:4:4 / 12-bit</td>
<td>3</td>
</tr>
</tbody>
</table>
The Telco and Datacom industries have needed to address the issue of increasing data rate requirements for many years.

They have developed a hierarchy of data rates, using single and multiple lanes as necessary, with protocols which allow simple conversion between rates.
The equipment which converts between a single signal at a higher rate and multiple signals at a lower rate within the hierarchy is called a **Gearbox**.
Now that the SMPTE is standardising Dual-Link and Quad-Link 3Gb/s SDI for transport of 6Gb/s and 12Gb/s payloads, the first application of gearbox technology could be in combining these into 6G SDI or 12G SDI single links.

The same approach could then be used to combine the 6Gb/s and 12Gb/s links into 24, 48, 96 and 192Gb/s links, once the technology for these links becomes appropriately affordable.
3G SDI – where we are now(ish)

<table>
<thead>
<tr>
<th>Data Rate Gb/s</th>
<th>1920 & 2048 x 1080 line</th>
<th>3840 & 4096 x 2160 line</th>
<th>7680 x 4320 line</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Single</td>
<td>Stereo 3D</td>
<td>Single</td>
</tr>
<tr>
<td>High Frame Rate 60 – 120 fps</td>
<td>4:4:4 / 12-bit</td>
<td>12</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>4:2:2 / 10-bit</td>
<td>6</td>
<td>24</td>
</tr>
<tr>
<td>Mid Frame Rate 30 – 60 fps</td>
<td>4:4:4 / 12-bit</td>
<td>2 x 3</td>
<td>4 x 3</td>
</tr>
<tr>
<td></td>
<td>4:2:2 / 10-bit</td>
<td>3</td>
<td>2 x 3</td>
</tr>
<tr>
<td>Low Frame Rate ≤ 30 fps</td>
<td>4:4:4 / 12-bit</td>
<td>3</td>
<td>2 x 3</td>
</tr>
<tr>
<td></td>
<td>4:2:2 / 10-bit</td>
<td>1.5</td>
<td>3</td>
</tr>
</tbody>
</table>

NOTE: today there are no standardized SDI interfaces for frame rates beyond 60p
<table>
<thead>
<tr>
<th>Data Rate Gb/s</th>
<th>1920 & 2048 x 1080 line</th>
<th>3840 & 4096 x 2160 line</th>
<th>7680 x 4320 line</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Single</td>
<td>Stereo 3D</td>
<td>Single</td>
</tr>
<tr>
<td>High Frame Rate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60 – 120 fps</td>
<td>4:4:4 / 12-bit</td>
<td>2 x 6</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>4:2:2 / 10-bit</td>
<td>6</td>
<td>4 x 6</td>
</tr>
<tr>
<td>Mid Frame Rate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 – 60 fps</td>
<td>4:4:4 / 12-bit</td>
<td>6</td>
<td>4 x 6</td>
</tr>
<tr>
<td></td>
<td>4:2:2 / 10-bit</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Low Frame Rate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ 30 fps</td>
<td>4:4:4 / 12-bit</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>4:2:2 / 10-bit</td>
<td>1.5</td>
<td>3</td>
</tr>
</tbody>
</table>
12G SDI

<table>
<thead>
<tr>
<th>Data Rate Gb/s</th>
<th>1920 & 2048 x 1080 line</th>
<th>3840 & 4096 x 2160 line</th>
<th>7680 x 4320 line</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Single</td>
<td>Stereo 3D</td>
<td>Single</td>
</tr>
<tr>
<td>High Frame Rate</td>
<td>60 – 120 fps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4:4:4 / 12-bit</td>
<td>12</td>
<td>4 x 12</td>
<td>192</td>
</tr>
<tr>
<td>4:2:2 / 10-bit</td>
<td>6</td>
<td>2 x 12</td>
<td>96</td>
</tr>
<tr>
<td>Mid Frame Rate</td>
<td>30 – 60 fps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4:4:4 / 12-bit</td>
<td>6</td>
<td>2 x 12</td>
<td>96</td>
</tr>
<tr>
<td>4:2:2 / 10-bit</td>
<td>3</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>Low Frame Rate</td>
<td>≤ 30 fps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4:4:4 / 12-bit</td>
<td>3</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>4:2:2 / 10-bit</td>
<td>1.5</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Data Rate Gb/s</td>
<td>1920 & 2048 x 1080 line</td>
<td>3840 & 4096 x 2160 line</td>
<td>7680 x 4320 line</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Single</td>
<td>Single</td>
<td>Single</td>
<td>Single</td>
</tr>
<tr>
<td>Stereo 3D</td>
<td>Stereo 3D</td>
<td>Stereo 3D</td>
<td>Stereo 3D</td>
</tr>
</tbody>
</table>

High Frame Rate
60 – 120 fps

<table>
<thead>
<tr>
<th>Data Format</th>
<th>Single</th>
<th>Stereo 3D</th>
<th>Single</th>
<th>Stereo 3D</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:4:4 / 12-bit</td>
<td>12</td>
<td>2 x 24</td>
<td></td>
<td>192</td>
</tr>
<tr>
<td>4:2:2 / 10-bit</td>
<td>6</td>
<td>24</td>
<td></td>
<td>4 x 24</td>
</tr>
</tbody>
</table>

Mid Frame Rate
30 – 60 fps

<table>
<thead>
<tr>
<th>Data Format</th>
<th>Single</th>
<th>Stereo 3D</th>
<th>Single</th>
<th>Stereo 3D</th>
<th>Single</th>
<th>Stereo 3D</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:4:4 / 12-bit</td>
<td>6</td>
<td>12</td>
<td>24</td>
<td>2 x 24</td>
<td>4 x 24</td>
<td>192</td>
</tr>
<tr>
<td>4:2:2 / 10-bit</td>
<td>3</td>
<td>6</td>
<td>12</td>
<td>24</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Low Frame Rate
≤ 30 fps

<table>
<thead>
<tr>
<th>Data Format</th>
<th>Single</th>
<th>Stereo 3D</th>
<th>Single</th>
<th>Stereo 3D</th>
<th>Single</th>
<th>Stereo 3D</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:4:4 / 12-bit</td>
<td>3</td>
<td>6</td>
<td>12</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4:2:2 / 10-bit</td>
<td>1.5</td>
<td>3</td>
<td>6</td>
<td>12</td>
<td>24</td>
<td>2 x 24</td>
</tr>
</tbody>
</table>

24G SDI
24G SDI

<table>
<thead>
<tr>
<th>Data Rate Gb/s</th>
<th>1920 & 2048 x 1080 line</th>
<th>3840 & 4096 x 2160 line</th>
<th>7680 x 4320 line</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Single</td>
<td>Stereo 3D</td>
<td>Single</td>
</tr>
<tr>
<td>High Frame Rate</td>
<td>60 – 120 fps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4:4:4 / 12-bit</td>
<td>12</td>
<td>2 x 24</td>
<td>8 x 24</td>
</tr>
<tr>
<td>4:2:2 / 10-bit</td>
<td>6</td>
<td>24</td>
<td>4 x 24</td>
</tr>
<tr>
<td>Mid Frame Rate</td>
<td>30 – 60 fps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4:4:4 / 12-bit</td>
<td>6</td>
<td>24</td>
<td>4 x 24</td>
</tr>
<tr>
<td>4:2:2 / 10-bit</td>
<td>3</td>
<td>12</td>
<td>2 x 24</td>
</tr>
<tr>
<td>Low Frame Rate</td>
<td>≤ 30 fps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4:4:4 / 12-bit</td>
<td>3</td>
<td>24</td>
<td>4 x 24</td>
</tr>
<tr>
<td>4:2:2 / 10-bit</td>
<td>1.5</td>
<td>12</td>
<td>2 x 24</td>
</tr>
</tbody>
</table>

There are no standardized 200G interface technologies to leverage.
UHD-SDI – Continuing the evolution of SDI

A „hierarchy“ of interface profiles, operating at 6Gb/s, 12Gb/s and 24Gb/s nominal line rates for UHDTV and D-Cinema applications

HDTV@120Hz to UHDTV2@120Hz (Including Stereoscopic 3D) for television
2k@24Hz to 4K@120Hz (Including Stereoscopic 3D) for D-Cinema

75 ohm Coax and Single Mode Fiber-Optic physical layer interface for all rates
- Re-use of existing infrastructure
- Re-use of existing single-mode fibre infrastructure

Backwards compatible with existing single link and multi-link 3Gb/s SMPTE SDI interfaces
- Directly compatible with Single link, Dual-link and Quad-link 3G standards
- Maximum re-use of existing 3G and multi-link 3G implementations
- Confidence monitoring of UHD images on each link
 - Each link carries a complete representation of the original image (at reduced resolution)
The current proposal is for a separate standard number for each of 6G, 12G and 24G SDI

ST 2081 for 6G; ST 2082 for 12G; ST 2083 for 24G

Each standard number will consist of several parts:

- **Parts 0** is a descriptive list of the other parts in the document suite.
- **Parts 1-9** are allocated for serialisation and physical interface standards.
- **Parts 10-19** are allocated for single image mappings on to single link or multi-link interfaces.
- **Parts 20-29** are allocated for stereoscopic image mappings on to single link or multi-link interfaces.
- **Part 30** is allocated for Multi-stream mapping.
The current proposal is for a separate standard number for each of 6G, 12G and 24G SDI

ST 2081 for 6G; ST 2082 for 12G; ST 2083 for 24G

Each standard number will consist of several parts:

- **Parts 0** is a descriptive list of the other parts in the document suite
- Parts 1-9 are allocated for serialisation and physical interface standards.
- Parts 10-19 are allocated for single image mappings on to single link or multi-link interfaces
- Parts 20-29 are allocated for stereoscopic image mappings on to single link or multi-link interfaces
- Part 30 is allocated for Multi-stream mapping
The current proposal is for a separate standard number for each of 6G, 12G and 24G SDI

ST 2081 for 6G; ST 2082 for 12G; ST 2083 for 24G

Each standard number will consist of several parts:

Parts 0 is a descriptive list of the other parts in the document suite

Parts 1-9 are allocated for serialisation and physical interface standards

Parts 10-19 are allocated for single image mappings on to single link or multi-link interfaces

Parts 20-29 are allocated for stereoscopic image mappings on to single link or multi-link interfaces

Part 30 is allocated for Multi-stream mapping
The current proposal is for a separate standard number for each of 6G, 12G and 24G SDI

ST 2081 for 6G; ST 2082 for 12G; ST 2083 for 24G

Each standard number will consist of several parts:

Parts 0 is a descriptive list of the other parts in the document suite
Parts 1-9 are allocated for serialisation and physical interface standards

Parts 10-19 are allocated for single image mappings on to single link or multi-link interfaces

Parts 20-29 are allocated for stereoscopic image mappings on to single link or multi-link interfaces

Part 30 is allocated for Multi-stream mapping
The current proposal is for a separate standard number for each of 6G, 12G and 24G SDI

ST 2081 for 6G; ST 2082 for 12G; ST 2083 for 24G

Each standard number will consist of several parts:

Parts 0 is a descriptive list of the other parts in the document suite
Parts 1-9 are allocated for serialisation and physical interface standards.
Parts 10-19 are allocated for single image mappings on to single link or multi-link interfaces
Parts 20-29 are allocated for stereoscopic image mappings on to single link or multi-link interfaces
Part 30 is allocated for Multi-stream mapping
The current proposal is for a separate standard number for each of 6G, 12G and 24G SDI

ST 2081 for 6G; ST 2082 for 12G; ST 2083 for 24G

Each standard number will consist of several parts:

- Parts 0 is a descriptive list of the other parts in the document suite
- Parts 1-9 are allocated for serialisation and physical interface standards.
- Parts 10-19 are allocated for single image mappings on to single link or multi-link interfaces
- Parts 20-29 are allocated for stereoscopic image mappings on to single link or multi-link interfaces
- **Part 30** is allocated for Multi-stream mapping

Please join the working group if you wish to contribute to this process.
SMPTE Standardization Activity 3G Multi-link

ST 274, 296, 428-9, 428-19 & 2048-2
1920x1080, 1280x720 & 2048x1080

ST 274, 428-9, 428-19, 2048-1, 2048-2 & 2036-1
1920x1080, 2048x1080, 4096x2160 & 3840x2160

ST 2048-1 & 2036-1
4096x2160 & 3840x2160

ST 425-1
Source Image Format & Ancillary Data Mapping for the 3Gbps SDI Interface

ST 425-3
Image Format and Ancillary Data Mapping for the Dual Link 3 Gbps Serial Interface

ST 425-5
Image Format and Ancillary Data Mapping for the Quad Link 3 Gbps Serial Interface

ST 425-2
Source Image Format and Ancillary Data Mapping for Stereoscopic Image Formats on a Single-Link 3 Gbps Serial Interface

ST 425-4
Dual 3 Gbps Serial Digital Interface for Stereoscopic Image Transport

ST 425-6
Quad 3 Gbps Serial Digital Interface for Stereoscopic Image Transport

ST 424 3Gbps Signal / Data Serial Interface
ST 297 Optical Interface
SMPTE Standardization Activity ST 2081-xx 6G SDI

ST 274, 296, 428-9, 428-19 & 2048-2
1920x1080, 1280x720 & 2048x1080

ST 274, 428-9, 428-19, 2048-1, 2048-2 & 2036-1
1920x1080, 2048x1080, 4096x2160 & 3840x2160

ST 2048-1 & 2036-1
4096x2160 & 3840x2160

ST 425-1
Source Image Format & Ancillary Data Mapping for the 3Gbps SDI Interface

ST 425-3
Image Format and Ancillary Data Mapping for the Dual Link 3 Gbps Serial Interface

ST 425-5
Image Format and Ancillary Data Mapping for the Quad Link 3 Gbps Serial Interface

ST 425-4
Dual 3 Gbps Serial Digital Interface for Stereoscopic Image Transport

ST 425-6
Quad 3 Gbps Serial Digital Interface for Stereoscopic Image Transport

ST 2081-10
1080-line P 96, 100 & 120
2160-line and 1080-line Image Formats on a single link 6Gbps interface

ST 2081-11
2160-line and 1080-line Image Formats on a dual link 6Gbps interface

ST 2081-12
4320-line and 2304-line Image Formats on a Quad link 6Gbps interface

ST 2081-20
1080-line and 720-line Stereoscopic Image Transport on a single link 56Gbps interface

ST 2081-21
2160-line and 1080-line Stereoscopic Image Transport on a dual link 56Gbps interface

ST 2081-22
2160-line and 1080-line Stereoscopic Image Transport on a quad link 56Gbps interface

ST 2081-1 6Gbps Signal / Data Serial Interface - Electrical
ST 2081-2 6Gbps Signal / Data Serial Interface - Optical
SMPTE Standardization Activity – ST 2082-xx 12G SDI

ST 274, 428-9, 428-19, 2048-1, 2048-2 & 2036-1
1920x1080, 2048x1080, 4096x2160 & 3840x2160

ST 2048-1 & 2036-1
7680x4320, 4096x2160 & 3840x2160

ST 425-3
Image Format and Ancillary Data Mapping for the Dual-Link 3 Gb/s Serial Interface

ST 425-5
Image Format and Ancillary Data Mapping for the Quad-Link 3 Gb/s Serial Interface

ST 425-6
Quad 3 Gb/s Serial Digital Interface for Stereoscopic Image Transport

ST 2081-10
2160-line and 1080-line image formats on a single link 6Gb/s interface

ST 2081-11
2160-line and 1080-line image formats on a dual link 6Gb/s interface

ST 2081-12
2160-line and 1080-line Stereoscopic Image Transport on a single link 6Gb/s interface

ST 2081-21
2160-line Stereoscopic Image Transport on a dual link 6Gb/s interface

ST 2081-22
4320-line and 2160-line Stereoscopic Image Transport on a quad link 12Gb/s interface

ST 2082-10
2160-line P 96, 100 & 120

ST 2082-20
2160-line image formats on a single link 12Gb/s interface

ST 2082-50
2160-line image formats on a single link 12Gb/s interface

ST 2082-11
3840-line and 2160-line image formats on a dual link 12Gb/s interface

ST 2082-21
2160-line Stereoscopic Image Transport on a dual link 12Gb/s interface

ST 2082-22
4320-line and 2160-line Stereoscopic Image Transport on a quad link 12Gb/s interface

ST 2082-23
10308b/s Signal / Data Serial Interface - Electrical
ST 2082-2110308b/s Signal / Data Serial Interface - Optical
SMPTE Standardization Activity – ST 2083-xx 24G SDI

<table>
<thead>
<tr>
<th>SMPTE Standard</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>2048-1 & 2036-1</td>
<td>4096x2160 & 3840x2160</td>
</tr>
<tr>
<td>ST 2048-1 & 2036-1</td>
<td>7680x4320, 4960x2160 & 3840x2160</td>
</tr>
</tbody>
</table>

Don’t forget to pick up your Free UHD-SDI Standards poster Today !!

Free shipping and handling: carry it home yourself
Some restrictions apply: only one per household – strictly limited while stocks last
SMPTE 32NF70 UHD-SDI Standards Timeline

- **HDTV**
 - 2k60 422 10-bit @ 3Gb/s
 - 4k30 422 10-bit @ 6Gb/s
 - 4k120 422 10-bit @ 12Gb/s
 - 1080p100/120 @ 6Gb/s

- **UHDTV-1**
 - 4k60 422 10-bit @ 12Gb/s
 - 4k120 422 10-bit @ 24Gb/s
 - 6G UHD-SDI

- **UHDTV-2**
 - 8k60 422 10-bit @ 48Gb/s
 - 8k120 422 10-bit @ 96Gb/s

- **8k**
 - 8k120 444 12-bit @ 200Gb/s

- **1080p100/120**
 - 1080p100/120 @ 6Gb/s

- ** Formats**
 - Multi-link 3G SDI
 - Dual-link 12G UHD-SDI
 - Quad-link 12G UHD-SDI
 - Octa-link 24G UHD-SDI

Confidential & Proprietary
Larger formats divided to multiple 1080-line sub-images using 2-sample division

2160-line images (4k) divided to 4 x 1080-line sub images

Even sample pairs (e.g. samples 0,1) from even lines (e.g. line 0) make up sub-image 1
Odd sample pairs (e.g. samples 2,3) from even lines make up sub-image 2
Even sample pairs from odd lines (e.g. line 1) make up sub-image 3
Odd sample pairs from odd lines make up sub-image 4

Samples are paired to accommodate 4:2:2 sampling structures

NOTE: no “square” (quadrant split), sub-division
Larger formats divided to multiple 1080-line sub-images using 2-sample division

4320-line images (8k) divided to 4 x 2160-line sub images

2160-line images (4k) divided to 4 x 1080-line sub images
UHD-SDI Mapping Rules & Structures

1080-line sub-images each mapped onto 10-bit Data Streams – compatible with 3G SDI

2 per 3G link; 4 per 6G link; 8 per 12G link; and 16 per 24G link

Example 3G virtual interface

<table>
<thead>
<tr>
<th>Stream 1</th>
<th>Stream 2</th>
<th>Stream 3</th>
<th>Stream 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA Stream 1 of Virtual Interface SDI Stream Frequency: 144.5 MHz</td>
<td>DATA Stream 2 of Virtual Interface SDI Stream Frequency: 144.5 MHz</td>
<td>DATA Stream 3 of Virtual Interface SDI Stream Frequency: 144.5 MHz</td>
<td>DATA Stream 4 of Virtual Interface SDI Stream Frequency: 144.5 MHz</td>
</tr>
<tr>
<td>Optional Auxiliary Data</td>
<td>Optional Auxiliary Data</td>
<td>Optional Auxiliary Data</td>
<td>Optional Auxiliary Data</td>
</tr>
</tbody>
</table>

Example 6G UHD-SDI virtual interface

<table>
<thead>
<tr>
<th>Stream 1</th>
<th>Stream 2</th>
<th>Stream 3</th>
<th>Stream 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA Stream 1 of Virtual Interface SDI Stream Frequency: 144.5 MHz</td>
<td>DATA Stream 2 of Virtual Interface SDI Stream Frequency: 144.5 MHz</td>
<td>DATA Stream 3 of Virtual Interface SDI Stream Frequency: 144.5 MHz</td>
<td>DATA Stream 4 of Virtual Interface SDI Stream Frequency: 144.5 MHz</td>
</tr>
<tr>
<td>Optional Auxiliary Data</td>
<td>Optional Auxiliary Data</td>
<td>Optional Auxiliary Data</td>
<td>Optional Auxiliary Data</td>
</tr>
</tbody>
</table>

Example 12G UHD-SDI virtual interface

<table>
<thead>
<tr>
<th>Stream 1</th>
<th>Stream 2</th>
<th>Stream 3</th>
<th>Stream 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA Stream 1 of Virtual Interface SDI Stream Frequency: 144.5 MHz</td>
<td>DATA Stream 2 of Virtual Interface SDI Stream Frequency: 144.5 MHz</td>
<td>DATA Stream 3 of Virtual Interface SDI Stream Frequency: 144.5 MHz</td>
<td>DATA Stream 4 of Virtual Interface SDI Stream Frequency: 144.5 MHz</td>
</tr>
<tr>
<td>Optional Auxiliary Data</td>
<td>Optional Auxiliary Data</td>
<td>Optional Auxiliary Data</td>
<td>Optional Auxiliary Data</td>
</tr>
</tbody>
</table>
Ancillary Data – Including Audio

Ancillary data are carried preferentially by data stream one.
Audio data are carried preferentially by data stream pair one/two
Mapping to SDI Links

A 2160-line Image mapped to quad-link 3G SDI (ST 425-5)
UHD-SDI Mapping Rules & Structures

Mapping to SDI Links

A 2160-line Image mapped to dual-link 6G SDI (Proposed ST 2081-11)
Only the Payload Identifiers change to signify carriage over 6G SDI
UHD-SDI Mapping Rules & Structures

Mapping to SDI Links

The same 2160-line Image mapped to single-link 12G SDI (Proposed ST 2083-10)
Only the Payload Identifiers change to signify carriage over 12G SDI
High Frame Rate Images – This bit is new

Everything so far is a direct extension of the ST 425 multi-link 3G standards

However, there is no precedent in the ST 425 multi-3G standards for High Frame Rate images

HFR images are defined in SMPTE and ITU-R standards for UHDTV and D-Cinema

 BUT Their transport is not defined anywhere……. and there are no HFR standards for HDTV

In order to be able to divide these source images to 1080-line sub-images for transport, two additions are needed:

 (1) A standard for a 1920 x 1080 image container at 100 and 120 fps and a 2048 x 1080 image container at 96, 100 and 120 fps is required

 (2) A method for mapping the 1080-line HFR sub-images into SDI is also required
2-sample division, creates 1080-line frames at the native frame rate, but with the lines at half-length.
Once the half-length container is mapped into a physical interface it appears like any other SDI interface.
Each data stream of the Virtual Interface carries the SMPTE ST 352 Video Payload Identification Codes to identify:

The image format, mapping structure and interface;
Frame rate, sampling structure and color space;
Bit-depth and channel number for multilink interfaces

<table>
<thead>
<tr>
<th>Bits</th>
<th>Byte 1</th>
<th>Byte 2</th>
<th>Byte 3</th>
<th>Byte 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit 7</td>
<td>Interlaced or progressive transport</td>
<td>Interlaced or progressive transport</td>
<td>Aspect Ratio</td>
<td>Channel assignment</td>
</tr>
<tr>
<td>Bit 6</td>
<td>Payload, interface and Mapping identification Assigned by SMPTE HQ</td>
<td>Payload, interface and Mapping identification Assigned by SMPTE HQ</td>
<td>Aspect Ratio</td>
<td>Interface Assignment</td>
</tr>
<tr>
<td>Bit 5</td>
<td>Progressive picture</td>
<td>Progressive picture</td>
<td>Horizontal sampling</td>
<td>Audio Channel Assignment</td>
</tr>
<tr>
<td>Bit 4</td>
<td>Reserved (0)</td>
<td>Reserved (0)</td>
<td>Color Gamut</td>
<td>Channel Valid</td>
</tr>
<tr>
<td>Bit 3</td>
<td>Reserved (0)</td>
<td>Reserved (0)</td>
<td>Color Gamut</td>
<td>Bit depth</td>
</tr>
<tr>
<td>Bit 2</td>
<td>Picture rate</td>
<td>Picture rate</td>
<td>Sampling structure</td>
<td></td>
</tr>
<tr>
<td>Bit 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
UHD-SDI Physical Layer - Electrical

<table>
<thead>
<tr>
<th></th>
<th>270Mb/s</th>
<th>1.5Gb/s</th>
<th>3Gb/s</th>
<th>6Gb/s</th>
<th>12Gb/s</th>
<th>24Gb/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard:</td>
<td>ST 250M</td>
<td>ST 292-1</td>
<td>ST 424</td>
<td>Proposed ST 2081-1</td>
<td>Proposed ST 2082-1</td>
<td>Proposed ST 2083-1</td>
</tr>
<tr>
<td>Coding:</td>
<td>Scrambled NRZI</td>
<td>Scrambled NRZI</td>
<td>Scrambled NRZI</td>
<td>Scrambled NRZI</td>
<td>Scrambled NRZI</td>
<td>Scrambled NRZI</td>
</tr>
<tr>
<td>Amplitude:</td>
<td>800mV ±10%</td>
<td>800mV ±10%</td>
<td>800mV ±10%</td>
<td>800mV ±10%</td>
<td>800mV ±10%</td>
<td>800mV ±10%</td>
</tr>
<tr>
<td>DC Offset:</td>
<td>0.0V ±0.5V</td>
<td>0.0V ±0.5V</td>
<td>0.0V ±0.5V</td>
<td>0.0V ±0.5V</td>
<td>0.0V ±0.5V</td>
<td>0.0V ±0.5V</td>
</tr>
<tr>
<td>Rise-/fall time:</td>
<td>≤ 400ps ... 1.5ns</td>
<td>≤ 270ps</td>
<td>≤ 135ps</td>
<td>≤ 80ps</td>
<td>≤ 45ps</td>
<td>≤ 28ps</td>
</tr>
<tr>
<td>A Rise-/fall time:</td>
<td>≤ 500ps</td>
<td>≤ 100ps</td>
<td>≤ 50ps</td>
<td>≤ 35ps</td>
<td>≤ 18ps</td>
<td>≤ 8ps</td>
</tr>
<tr>
<td>Over-/under-shoot:</td>
<td>10% of the amplitude</td>
</tr>
<tr>
<td>Timing Jitter:</td>
<td>< 0.2 UI up to 10 Hz</td>
<td>< 1 UI up to 10 Hz</td>
<td>< 2 UI up to 10 Hz</td>
</tr>
<tr>
<td>Alignment Jitter:</td>
<td>< 0.2 UI</td>
<td>< 0.2 UI</td>
<td>< 0.3 UI</td>
<td>< 0.3 UI</td>
<td>< 0.3 UI</td>
<td>< 0.3 UI</td>
</tr>
<tr>
<td>Lower edge Mhz:</td>
<td>100 KHz</td>
<td>100 KHz</td>
<td>100 KHz</td>
<td>100 KHz</td>
<td>100 KHz</td>
<td>100 KHz</td>
</tr>
<tr>
<td>Return Loss:</td>
<td>< 15 dB - 5 MHz to 270 MHz</td>
<td>< 15 dB - 5 MHz to 1.5 GHz</td>
<td>< 15 dB - 5 MHz to 1.5 GHz</td>
<td>< 15 dB - 5 MHz to 1.5 GHz</td>
<td>< 15 dB - 5 MHz to 1.5 GHz</td>
<td>< 15 dB - 5 MHz to 1.5 GHz</td>
</tr>
<tr>
<td>75 Ω Coaxial Cable length (Point-to-point):</td>
<td>400 m+</td>
<td>300 m</td>
<td>200 m</td>
<td>100 m+</td>
<td>60 m+</td>
<td>≤ 40 m</td>
</tr>
</tbody>
</table>

NOTE: Cable lengths for 6G, 12G and 24G UHD-SDI are based on “first generation” silicon capabilities with “Industry standard” ST 424 (3G) compliant cables and connectors.
UHD-SDI Physical Layer – Optical Transmitter

<table>
<thead>
<tr>
<th>Transmit Unit Optical Output</th>
<th>270Mb/s</th>
<th>1.5Gb/s</th>
<th>3Gb/s</th>
<th>6Gb/s</th>
<th>12Gb/s</th>
<th>24Gb/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High-Power</td>
<td>ST 297</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medium-Power</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low-Power</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transmission circuit fiber</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM (9.0/125 um)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM (9.0/125 um)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Light Source</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laser</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laser</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optical wavelength</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1310 nm +/- 40nm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1550 nm +/- 40nm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum spectral line width</td>
<td><=1 nm</td>
<td><=4 nm</td>
<td><=10 nm</td>
<td><=4 nm</td>
<td><=1 nm</td>
<td></td>
</tr>
<tr>
<td>Maximum Optical Power</td>
<td>+10 dBm</td>
<td>+0 dBm</td>
<td>-3 dBm</td>
<td>+0.5 dBm</td>
<td>3.0 dBm</td>
<td></td>
</tr>
<tr>
<td>Minimum Optical Power</td>
<td>0 dBm</td>
<td>-3 dBm</td>
<td>-12 dBm</td>
<td>-5.5 dBm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum Extinction ratio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rise fall times (optical)</td>
<td>400ps ... 1.5ns</td>
<td><= 270ps</td>
<td><= 135ps</td>
<td><= 80ps</td>
<td><= 45ps</td>
<td><= 28ps</td>
</tr>
<tr>
<td>Maximum intrinsic jitter (Optical)</td>
<td><0.2 UI</td>
<td><0.2 UI</td>
<td>< 0.3 UI</td>
<td>< 0.3 UI</td>
<td>< 0.3 UI</td>
<td>< 0.3 UI</td>
</tr>
<tr>
<td>Maximum reflected power</td>
<td>1KHz to 27Mhz</td>
<td>100KHz to 150Mhz</td>
<td>100KHz to 300Mhz</td>
<td>100KHz to 600Mhz</td>
<td>100KHz to 1200Mhz</td>
<td>100KHz to 2400MHz</td>
</tr>
<tr>
<td>Electrical / Optical Transfer function</td>
<td>Logic “1” = Higher optical power</td>
<td>Logic “0” = Lower optical power</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preferred Connector</td>
<td>LC PC</td>
<td>MPO / MTP® Fiber Connector 8-degree angled end-face</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module form factor</td>
<td>SFP / SFP+</td>
<td>QSFP / QSFP+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
UHD-SDI Physical Layer – Optical Receiver

<table>
<thead>
<tr>
<th>Standard:</th>
<th>270Mb/s</th>
<th>1.5Gb/s</th>
<th>3Gb/s</th>
<th>6Gb/s</th>
<th>12Gb/s</th>
<th>24Gb/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 297</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transmission circuit fiber</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM (9.0/125 um)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominal Wavelength</td>
<td>1310 nm +/- 40nm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum input overload power</td>
<td>-7.5 dBm, 0 dBm preferred</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum Input power</td>
<td>-20 dBm</td>
<td>-17 dBm</td>
<td>-14 dBm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detector damage threshold</td>
<td>+1 dBm (minimum)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical / Optical Transfer Function</td>
<td>Higher optical power = Logic “1” / Lower optical power = Logic “0”</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preferred Connector</td>
<td>LC PC</td>
<td></td>
<td></td>
<td>MPO / MTP® Fiber Connector 8-degree angled end-face</td>
<td>QSFP / QSFP+</td>
<td></td>
</tr>
<tr>
<td>Module form factor</td>
<td>SFP / SFP+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A single “robust” optical connector solution is proposed for standardization.

One form factor (multi-fiber), to support data rates from 270Mb/s to 200Gb/s on a single (multi-fiber optical), cable.

- Rugged, robust and dirt-protected (shuttered apperture)
- Simple integration – LC connection or MTP ®
- Versatile – multichannel 4 and 8 fibers connection system
- Common QSFP optical module form factor
- Up to 2km link distance at all data rates
The basic technology required to implement 6G, 12G, and 24G UHD-SDI was demonstrated at IBC 2013.
At InterBEE last week – 96Gb/s

- Demonstrates all of the “Gearbox” principals and multiplexing techniques required for 7680x4320p120 YCbCr 4:2:2 10-bit images

- **Note:** Due to lack of availability of 8kp120 source or display, this demo was restricted to “4kp60 YCbCr 4:2:2 10-bit 8-times”
Technology Demonstrations

InterBEE Technology demonstration – 2 x 48Gb/s or 96Gb/s total payload

2 x UHDTV1@120p RGB 4:4:4 12-bit (48Gb/s payload)
1 x UHDTV2@120p YCbCr 4:2:2 10-bit (96Gb/s payload)
What are we showing today?

Dual 6G to Quad 12G (x2)

Quad-link 12G (x2)

Quad 12G (x2) to Dual 6G

(one of 8 selector)

Quad 12G (x2) to Dual 6G

(one of 8 selector)

Single-mode Fibre

Dual 6G to Quad 12G (x2)

Quad-link 12G (x2)

Quad 12G (x2) to Dual 6G

(one of 8 selector)

Single-mode Fibre

Dual 6G to Quad 12G (x2)

Quad-link 12G (x2)

Quad 12G (x2) to Dual 6G

(one of 8 selector)

Single-mode Fibre

Dual 6G to Quad 12G (x2)

Quad-link 12G (x2)

Quad 12G (x2) to Dual 6G

(one of 8 selector)

Single-mode Fibre

Dual 6G to Quad 12G (x2)

Quad-link 12G (x2)

Quad 12G (x2) to Dual 6G

(one of 8 selector)

Single-mode Fibre

Dual 6G to Quad 12G (x2)

Quad-link 12G (x2)

Quad 12G (x2) to Dual 6G

(one of 8 selector)

Single-mode Fibre

Dual 6G to Quad 12G (x2)

Quad-link 12G (x2)

Quad 12G (x2) to Dual 6G

(one of 8 selector)

Single-mode Fibre

Dual 6G to Quad 12G (x2)

Quad-link 12G (x2)

Quad 12G (x2) to Dual 6G

(one of 8 selector)

Single-mode Fibre

Dual 6G to Quad 12G (x2)

Quad-link 12G (x2)

Quad 12G (x2) to Dual 6G

(one of 8 selector)

Single-mode Fibre

Dual 6G to Quad 12G (x2)

Quad-link 12G (x2)

Quad 12G (x2) to Dual 6G

(one of 8 selector)

Single-mode Fibre

Dual 6G to Quad 12G (x2)

Quad-link 12G (x2)

Quad 12G (x2) to Dual 6G

(one of 8 selector)

Single-mode Fibre

Dual 6G to Quad 12G (x2)

Quad-link 12G (x2)

Quad 12G (x2) to Dual 6G

(one of 8 selector)

Single-mode Fibre

Dual 6G to Quad 12G (x2)

Quad-link 12G (x2)

Quad 12G (x2) to Dual 6G

(one of 8 selector)

Single-mode Fibre

Dual 6G to Quad 12G (x2)

Quad-link 12G (x2)

Quad 12G (x2) to Dual 6G

(one of 8 selector)

Single-mode Fibre

Dual 6G to Quad 12G (x2)

Quad-link 12G (x2)

Quad 12G (x2) to Dual 6G

(one of 8 selector)

Single-mode Fibre

Dual 6G to Quad 12G (x2)

Quad-link 12G (x2)

Quad 12G (x2) to Dual 6G

(one of 8 selector)

Single-mode Fibre
SMPTE Continues the evolution of SDI

A "hierarchy" of interface profiles for both Television and D-Cinema applications

Provides an interface solution for HDTV, UHDTV and D-Cinema production image formats from 6Gb/s (HDTV@120Hz) to 192Gb/s (UHDTV2@120Hz).

6Gb/s, 12Gb/s and 24Gb/s nominal line rates for coaxial cable and single mode fiber optic

Gearbox concept maximizes compatibility and affordability

Continues re-use of existing coaxial cable infrastructure for all legacy and future SDI requirements from 270Mb/s up to 200Gb/s

Allows for simple migration of infrastructure over time

Simple evolution from existing single-link and multi-link 3Gb/s SMPTE SDI interfaces

A robust optical fiber connector and cable

QSFP Optical module, & robust cable and connectors provides a single optical interface for all legacy and future SDI requirements from 270Mb/s up to 200Gb/s.
Thank you & on to the demos

John Hudson