End User experience improvements and Broadcaster advantages

Arlington - January 16th, 2020
Richard Lhermitte
Produced by SMPTE and SBE with support from the NAB and ATSC

and the support of our host, WETA Television
With the support and generosity of the following sponsors:
THANK YOU TO THE SMPTE DC, SBE AND NAB TEAM MEMBERS WHO PRODUCED THIS EVENT

Fred Willard Univision
Rick Singer Singer Media Engineering
Skip Pizzi NAB
Tom Hackett Diversified Systems
Melissa Davis Evertz
Louise Shidler Chesapeake Systems
Maciej Ochman CPB
James Snyder US Library of Congress
Nephi Griffith BMG
Greg Smalfelt Ch 16 Fairfax
Alex Snell BCI Digital
Peter Wharton Happy Robotz

WITHOUT THEIR VOLUNTEER EFFORTS THIS SUMMIT WOULD NOT BE POSSIBLE
Morning Program

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00 AM - 9:00 AM</td>
<td>Registration and continental breakfast</td>
</tr>
<tr>
<td>8:55 AM - 9:00 AM</td>
<td>Welcome from SMPTE, SBE and AES</td>
</tr>
<tr>
<td>9:00 AM - 9:05 AM</td>
<td>Kishore Persaud, SBE Baltimore, Fred Willard, SBE Washington</td>
</tr>
<tr>
<td>9:05 AM - 9:35 AM</td>
<td>Peter Wharton, SMPTE Membership VP and Chris Lane, Chief Engineer, WETA</td>
</tr>
<tr>
<td>9:35 AM - 10:00 AM</td>
<td>Lynn Claudy, SVP Technology, NAB and Chairman, ATSC Board of Directors</td>
</tr>
<tr>
<td>10:00 AM - 10:35 AM</td>
<td>Joonyoung Park, VP and Fellow, DigiCAP</td>
</tr>
<tr>
<td>10:35 AM - 11:15 AM</td>
<td>Lynn Claudy, SVP Technology, NAB and Chairman, ATSC Board of Directors</td>
</tr>
<tr>
<td>11:15 AM - 11:30 AM</td>
<td>Content Reception Enhancements</td>
</tr>
<tr>
<td>11:30 AM - 11:50 AM</td>
<td>Consumer Applications for Combined 5G & NextGen TV Networks</td>
</tr>
<tr>
<td>11:50 AM - 12:15 PM</td>
<td>Case Study: Hybrid Services at "Chicago 3.0"</td>
</tr>
<tr>
<td>12:15 PM - 01:20 PM</td>
<td>Buffet Lunch</td>
</tr>
</tbody>
</table>

Afternoon Program

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>01:25 PM - 01:45 PM</td>
<td>Protecting the NextGen TV Consumer</td>
</tr>
<tr>
<td>01:45 PM - 02:15 PM</td>
<td>Monetizing the NextGen TV Consumer</td>
</tr>
<tr>
<td>02:20 PM - 03:03 PM</td>
<td>Personalizing the Consumer Experience</td>
</tr>
<tr>
<td>03:03 PM - 03:40 PM</td>
<td>The Consumer Out-of-Home Experience</td>
</tr>
<tr>
<td>03:40 PM - 04:10 PM</td>
<td>The ATSC 3.0 Roadmap</td>
</tr>
<tr>
<td>04:10 PM - 04:35 PM</td>
<td>The Consumer Technology Roadmap</td>
</tr>
<tr>
<td>04:35 PM - 05:00 PM</td>
<td>Station Group and Industry Deployment Plans</td>
</tr>
<tr>
<td>05:00 PM - 6:00 PM</td>
<td>Cocktail Reception</td>
</tr>
</tbody>
</table>

Notes:
- **Registration and continental breakfast**
- **Welcome from SMPTE, SBE and AES**
- **Introduction**
- **NextGen TV: Transforming the Consumer Experience**
- **Creating New Opportunities with NextGen TV**
- **Improved Television Reception for Consumers**
- **Benefits of a Converged Broadcast and IP Platform**
- **Content Reception Enhancements**
- **Consumer Applications for Combined 5G & NextGen TV Networks**
- **Case Study: Hybrid Services at "Chicago 3.0"**
- **Buffet Lunch**
- **Protecting the NextGen TV Consumer**
- **Monetizing the NextGen TV Consumer**
- **Personalizing the Consumer Experience**
- **The Consumer Out-of-Home Experience**
- **The ATSC 3.0 Roadmap**
- **The Consumer Technology Roadmap**
- **Station Group and Industry Deployment Plans**
- **Cocktail Reception**
Agenda

- Content preparation and compression
- Protocol / Delivery for OTA & OTT Convergence
- Reception enhancement with ATSC 3.0 Physical layer
Broadcast Overall Architecture

TV Station
- 4K/UHD Cameras, Next-gen Audio, Captioning
- UHD
- UHD Production
- ATSC 3.0 Encoder, Multiplexer, Electronic Service Guide (ESG)
- Master Control
- Networks and Playout Servers
- Existing HD Cameras, Audio, Captioning
- HD Production
- IP Packets

Transmitter Site
- ATSC 3.0 exciter
- ATSC 3.0 Waveform
- Transmitter
- Mask Filter
- Studio-to-Transmitter Link (STL)
- Tower and Transmit Antenna

Home
- ATSC 3.0 TV (UHD)
- ATSC 3.0 Enabled Mobile Device
- ATSC 3.0 Gateway or Converter
- WiFi
- Tablets and Mobile Phones
- ATSC 1.0 TV

Legend
- Existing usable components
- May need upgrade
- New components
ATSC 3.0 Delivery workflow
Content, Packaging & Delivery, OTA Signal

Presentation | Protocol | Transmission

Content
- Live Services
- RT Contents
- Encoding
- AEA Server
- ESG Server
- Data
- NRT

Packaging & Delivery
- DASH/WPA
- Services + Signaling
- Broadcast Gateway

OTA Signal
- ATSC 3.0 TX Sites
- SFN Coverage
- ATSC 3.0 Exciter
- STLP
Content preparation

Compression

- Advanced Audio & Video compression
 - Video = HEVC (H265)
 - Audio = AC4 or MPEG-H

- Using less bandwidth

<table>
<thead>
<tr>
<th>Video Codec</th>
<th>Distribution</th>
<th>Bitrate (Mbps)</th>
<th>2 hrs (GB)</th>
<th>Qf</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPEG2</td>
<td>DVD (typical)</td>
<td>32.0</td>
<td>26.8</td>
<td>.64</td>
</tr>
<tr>
<td></td>
<td>Online (max.)</td>
<td>16.7</td>
<td>14.0</td>
<td>.34</td>
</tr>
<tr>
<td>H.264</td>
<td>Blu-Ray (typical)</td>
<td>25.0</td>
<td>21.0</td>
<td>.50</td>
</tr>
<tr>
<td></td>
<td>Online (max.)</td>
<td>10.0</td>
<td>8.4</td>
<td>.20</td>
</tr>
<tr>
<td></td>
<td>Broadcast (typ.)</td>
<td>6.0</td>
<td>5.0</td>
<td>.12</td>
</tr>
<tr>
<td>H.265</td>
<td>Online (max.)</td>
<td>6.0</td>
<td>5.0</td>
<td>.12</td>
</tr>
<tr>
<td></td>
<td>Broadcast (typ.)</td>
<td>4.0</td>
<td>3.4</td>
<td>.08</td>
</tr>
</tbody>
</table>

- Improve audio & video quality for a Better end user experience
- More Content on one RF Channel
Video preparation

End User Advantages

- **Better image quality**
 - SD, HD and UHD using HEVC
 - High Frame rate
 - High Dynamic Range & Wide Color Gamut
Audio preparation
End User Advantages

- Audio with Dolby AC4 or MPEG-H
 - Immersive audio: sound from any directions
 - Object based:
 - User choose what he want to listen
 - Sound is restituted at home according to user audio system
 - Efficiently transmitted: no audio / sound duplications
Audio preparation

Broadcaster Advantages

<table>
<thead>
<tr>
<th>Signaling Information</th>
<th>Audio Programme Components</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M&E</td>
</tr>
<tr>
<td>Default Preselection</td>
<td>M&E</td>
</tr>
<tr>
<td>(English)</td>
<td></td>
</tr>
<tr>
<td>Italian Preselection</td>
<td>M&E</td>
</tr>
<tr>
<td>Italian Audio Description Preselection</td>
<td>M&E</td>
</tr>
<tr>
<td>English Team Radio Preselection</td>
<td>M&E</td>
</tr>
<tr>
<td>M&E Only Preselection</td>
<td>M&E</td>
</tr>
</tbody>
</table>

MME = Main or Music & Effects
ATSC3.0 Protocol stack

Presentation, Protocol, Transmission

- Physical Layer (e.g. ATSC 3.0)
- Data Link Layer (e.g. GSE or TLV or ALP)
- Presentation Protocol Transmission
- UDP
- IP
- NRT
- DASH/MPU
- NRT
- Signaling
OTA OTT Convergence
Linear TV Delivery

- ATSC 3.0 decided that the linear TV will be
 - Package as OTT
 - Using ISO BMMF Segments: DASH or MPU

- CE device could then receive content through
 - ATSC 3.0 air interface
 - And / or through Broadband connection

- Easy Mix OTA, OTT, VOD on same device
- Deliver additional component through Broadband
- Deliver additional content through Broadband
Multi receiver
ATSC 3.0 on connected devices

- DASH as content packaging
- ROUTE as file delivery
- CE devices will receive segments
 - That could be decoded by any OTT player
 - Embedded in the CE device
 - Or store locally and access using any OTT local player
NextGen TV for connected devices
ATSC3.0 for all CE with DASH delivery

© LowaSIS
Content enrichment

Interactivity

- Interactivity based on
 - HTML5 & JavaScript based
 - With dedicated TV Service API

- Create easily a portal / universe around the linear service
- Mix OTA, OTT, VOD on same device
- Include additional information and videos around primary Live TV services
Physical Layer

ATSC 1.0 & ATSC 3.0 Comparison

ATSC 1.0 physical layer
- 8 level Vestigial Sideband modulation
- Reed-Solomon Forward Error Correction (FEC)
- One bit rate – 19.39 Mbps
- One coverage area – 15 dB CNR (rooftop)
- Gap-filling with echo-cancellation considerations
- Service flexibility – HDTV, multicast, data

8-VSB with fixed (188,210) RS FEC

19.4 Mbps

ATSC 3.0 physical layer
- Orthogonal Frequency Division Multiplexing Modulation
- LDPC FEC (more powerful correction, sharper roll-off)
- More bps/Hz – near theoretical limit
- Flexible bit rate and coverage area choices
- Enable on-channel repeaters and SFN for robust indoor and mobile reception with power-add considerations
- Multiple simultaneous “Physical Layer Pipes”

OFDM with variable code rate LDPC FEC

~25Mbps
Modulation Performance
OFDM Based
ATSC3.0 air interface

Bandwidth - Robustness

- Better robustness =
 - Better indoor reception for all TV at home =
 - Better end user satisfaction

- Increase coverage = more TV viewer

- Additional bandwidth = additional services
 - Linear services
 - Push of content
Physical Layer Pipe - 3

Main concept

➔ ATSC1 = 1 Multiplex / TS per RF channel

➔ ATSC3.0 MPLP = several Multiplexes per RF channel
MultiPLP - QoS classes scenario

Addressing different receivers

UHD Service

PLP #1
- 64 QAM
- 64800 LDPC
- 1/15 FEC

SD Service

PLP #2
- 16 QAM
- 64800 LDPC
- 5/15 FEC

Radios

PLP #3
- QPSK
- 64800 LDPC
- 5/15 FEC

6 MHz, TDM, 16k FFT, 64QAM, 64800 LDPC, 148us GI

8.70 Mbps
14.28 dB(1)
17.44 dB(2)

2.97 Mbps
2.82 dB(1)
4.32 dB(2)

0.66 Mbps
-1.70 dB(1)
-0.55 dB(2)

(1) AWGN
(2) Rayleigh
Single Frequency Network (SFN) Topology and advantages

- **Better RF coverage**
 - Several lower amplifiers instead of only one highly powered transmitter

- **Increase power reception**

 ![Diagram showing better RF coverage through SFN](image)

- **OFDM is more tolerant to multipath and echos compare to 8VSD**

- **Single Frequency Networks (SFN)** employs multiple transmitters to cover a service area

 - Better coverage
 - Increase coverage
Thank You

ENENSYS TeamCast Inc

Email richard.lhermitte@enensys.com
THANK YOU

FROM THE SMPTE WASHINGTON DC SECTION