Video over IP
and a few more things

NASTA CONFERENCE 2017 @ GUILD TV

PETER WEITZEL – HON SEC AND TREASURER SMPTE UK

Let’s start with
What is SMPTE
SMPTE is

The worlds largest members society for those working with the moving image – and its audio and metadata*

- Built on Three Pillars
 - Membership - we have about 7000 members - 550 in UK
 - Education – Journals (from 1916) webinars courses conferences
 - Standards - over 800 enabling interoperability

- Very Active in the UK
 - - c36 meetings from Southampton to Salford & Newbury to Ipswich
 - One VP 3 Directors and 1 Governor on SMPTE Board (out of 4/9/16)
 - The third largest section in SMPTE (after Hollywood and New York)
 - 5 student chapters – and this link with NaSTA – backed by £500 to the NaSTA tech award winner

- Something you Should Join – Its free for Students for a year and then $10 £7 after that

- Something that will help your Career www.smpte.org/uk

* metadata – the bits about bits – see other lecture

UK section

UK Section serves all who are working with the technology of moving pictures and associated sound & metadata – creatively, practically and innovatively in any format, and on any platform.

www.smpte.org/uk
Agenda

- What is SMPTE
- What is current (and past) video etc.?
- What is IP?
- Why is Video etc. over IP such a current topic?
 - And yet “old technology”
- Video over IP in 2017 plus and minus 2 years
- Video over IP in Studio
- Video over IP for Remote working
- Weitzel rules of IP

What was video

- Analogue
- Interlaced
- Allowed time for TV (display) to catch up
- Squeezed in to the space available
 - Colour rather muddled up
 - State of the art
What was video - Digital Starts

- Digital but based on Analogue waveform
- Interlaced
- Allowed time for TV (display) to catch up
- Squeezed in to the space available
 - Colour rather muddled up – Separated out Y Pr Pb and Embedded audio ST272
 - State of the art moved to 10 bit and common for "50Hz and "60 Hz (1000/1001)"
- SMPTE ST259 ITU-R BT 601 “270 Mbit/sec” SD
 - Issued in 1982 now version 7 BT601-7 2011
- Implementation started in early 1990s
 - but Analogue was still there is 2003 And still is?????

What was video - HD Starts

- Digital but based on Analogue waveform
- Interlaced and Progressive
- Allowed time for TV (display) to catch up
- Squeezed in to the space available
 - Colour rather muddled up – Separated out Y Pr Pb
 - State of the art 10 bit “50Hz and “60 Hz (1000/1001)” two raster
- SMPTE ST292 and ST424 ITU-R BT 709 “1.5G” 1080i 720P and “3G” 1080P
 - Issued in 1990 now version 5 BT709-52011
- Implementation started in early 2000s
 - but BT 601 still is used (but most "glue" works with SD and HD of any flavour)
What is video - UHD Starts

- Digital but based on Analogue waveform
- Interlaced Progressive only
- Allowed time for TV (display) to catch up
- Squeezed in to the space available
 - Colour rather muddled up – Separated out Y Pr Pb
 - State of the art 10++ bit "50Hz and "60 Hz (1000/1001)" two raster "4k" "8K"
 3840 by 2160 Quad HD and 7680 by 4320 16* HD
- SMPTE ST2081 and ST2082 ITU-R BT 2020 (and BT2100) “6G” and “12G”
 - Issued 2012 - but NHK practical “8k” demo London – Amsterdam 2008
- Implementation started in early/mid 2010s
 - - but BT 601 and BT709 still is used (but most “glue” works with SD and HD of any flavour)

Some quick points re UHD

- Static resolution is not enough
 need to sit 1.5 Picture Height for UHD1 to see the pixels
 BBC WHP 287 shows we sit >5H!! Even with bigger screens
- It needs WOW that can be seen across the room
- High Dynamic Range HDR – Darks blacker White/specular brighter
 - BT2100 Hybrid Log Gamma Scene referred (BBC NHK) PQ Display referred (Dolby)
- Wide Colour Gamut WCG
- Higher Frame rate HFR
- Immersive audio
 - Object based (using Metadata*) MPEG H or Atmos™
* metadata – the bits about bits – see other lecture
What is IP

- short for Internet Protocol.
- "a digital media transport system that runs over standard IP networks"
- Works (asynchronously) with Packets
- Layer 3 in the ISO/OSI model
- Inherently Routable
- Two Main Protocols
 - TCP/IP – files – resend if a packet gets lost
 - UDP – Streams – Send and forget – often RTP

Pros and Cons of IP for AV content

WHY IP

Cheap
Universal
Ubiquitous
The future
Fashionable
Accountants Heard of it

WHY NOT FOR AUDIO/VIDEO

Non Deterministic
Lossy
Latency
No timing reference
“Strange”
IT department own it!
Practical IP – the Switch/Router issues (1)

Switch Switch Switch Switch

2 packets arrive at the same time
But only one packet can get through
If there is a buffer in the switch one packet can be delayed
And then the second packet can come out – all be it delayed

Latency

Practical IP – the Switch/Router issues (2)

Switch Switch Switch Switch

2 packets arrive at the same time
But only one packet can get through
If there is NOT a buffer in the switch one packet will be lost for ever!

Lossy
Practical IP – the Switch/Router issues (3)

2 packets arrive at the same time
But only one packet can get through
If there is a buffer in the switch one packet can be delayed
But Blue packets have priority "higher quality of service" QoS
And then the yellow packet can come out – all be it delayed twice

Non Deterministic

But in reality it’s not that simple (1)
But in reality its not that simple (2)

Switch

Note all other packets are slightly delayed
As the first packet has to end before it can be output
And then the 2 other (Time compressed) packets follow!

And this one is lost if there is not a buffer

But in reality its not that simple (3)

Switch

And this one is lost if there is not a buffer
But in reality it’s not that simple (Summary 1-4)

Switch

But if the Purple packets can be buffered
But in reality it's not that simple (2B)

Note all other packets are slightly delayed. As the first packet has to end before it can be output, and then the 2 other (time compressed) packets follow!

But in reality it's not that simple (3B)

And this one is also buffered.
But in reality it's not that simple (4B)

Switch

Three buffered packets

One lost packet

But in reality it's not that simple (5B)

Switch

Three buffered packets are now transmitted as there is nothing else to send.
But in reality it's not that simple (Summary 1-5B)

But if the Purple packets can be buffered
They will be delayed – but all three Packets are delivered in one I/p time interval not the 2 in which they arrived = It “Splurges”

But in reality it’s not that simple

- And it just get even more confusing –
- What if four Blue Packets arrive at once – and no Buffering?
 - Packet loss and some latency
- And four Blue packets – But this time with Buffering
 - No packet loss but one packet is a lot later than the others
- And then four More Blue packets arrive next period with Buffering
 - Maybe the four packets from the first period are output 3 in period 1 (ABC) one in period 2 (D) with Two from Period 2 (ab) and 2 buffered (cd)
 - Or the three packets from the First period are output in period 1 and Three from Period 2 are output and thus 1 packet from each period is Buffered (but is it AaBbCc or Dd?)
And there are always multiple switches

So packets may not arrive in the same order – and many opportunities for them to get lost – particularly if each Switch decide what to do with each packet

As they do in Normal office systems

So add some management – Ultimately a SDN

So most Broadcasts Video/ Adopt over IP systems have some Forms of Traffic management –
And for High Data rate systems – using a Software Defined Network SDN which controls where each and every packet is consistently routed – i.e., A central Management plane – and it can also reroute if a link fails!
How can we handle Packet loss

- **Forward Error Correction** – sending some extra packs which enable you to reconstruct a missing packet.
- BUT – adds latency – as the [7] packets need to be assembled at source and destination

Send two streams and then (hitlessly) switch between them
- this is quite well liked as IP systems often are 100% redundant
- so the second stream uses “empty capacity”

A few other things.....

- Packets can be different sizes
- They may not arrive exactly at the same interval – particularly as any network has multiple switches
- Buffering can ensure no packets are lost but they can also cause Splurging (which can overload downstream buffers) and wider range of latency....

- BUT most existing SDI (active) equipment can buffer video so it is not a great change to handle the IP jitter –
- BUT this assumes no packets are lost (or cannot be recovered)

SO aim NOT to loose packet not to try to recover them
So let's look at video over IP – past

As the IP circuits had capacity less than Video –

Video over IP only works if you compress it!

So a 270 Mbit/s SD SDI over a 100 Mbit/s link used for business – email, file transfer, Word etc.

so as this was historic – used the MPEG2 codec

Some standards ST2022-

- ST2022-1 FEC for Real-Time Video/Audio Transport
- ST2022-2 Constant Bit Rate MPEG-2 Transport Streams
- ST2022-3 Variable Bit Rate MPEG-2 Transport Streams
- ST2022-4 Non-Piecewise Constant Variable Bit Rate MPEG-2 Streams

There was going to be a -8 For JPEG2k (VSF TR/01) and the BBC had systems

Video over IP now and recent past

IP circuits having about the same capacity as the Video

Say SD and 1 Gbit/sec IP or HD and 10 Gbit/sec IP

So why not just wrap SDI 270M/ 2.5 or 3 G in IP?

- ST2022-6 High Bit Rate Media Signals over IP Networks
- ST2022-5 Forward Error Correction for Transport of High Bit Rate Media Signals
- ST2022-7 Seamless Protection Switching of SMPTE ST 2022 IP Datagrams
ST2022-6 issues

- Fairly simple to achieve
- But it still has all the problems of embedded audio
- Lots of embedders and de-embedders – and wrapping and un wrapping of SDI in IP
- **BUT**
 - And like analogue before it ...is unidirectional
 - All be it with audio and metadata transport !
 - AND it is not very efficient
- Yet can be used in a studio
 AND is used to get ITV and BBC Video around the UK (and BBC to/from USA)

ST2022-6 - the SDI Raster

- VANC
 - Line # and CRC
 - HANC audio
 - Syncs
- **WASTED SPACE**
- Active Picture
ST2022-6 - the SDI Raster much waste

As the signal is 1.485 Gbit/sec

In 1080i/50
Active video is 1.037 Gbit/sec
The ANC is 448Mbit/sec = 30% Wasted!

RFC 4175 - just active picture

RFC 4175 RTP Payload for Uncompressed Video, Sept. 2005

Works for:
- Any bit depth
- Up to 32767 x 32767 resolution
- 4:2:0, 4:2:2, 4:4:4 colour subsampling
- Progressive & interlaced

TR-03 adds HDR & WCG

"Pixel Groups" (pgroups) keeps related samples together
ST2110 – lets use existing standards

- Video Flows
 - RFC 4175 (uncompressed)
 - RFC 5372 (J2K)
 - RFC 6184 (H.264 I-frame)
- Audio Flows
 - RFC 3190 (AES67) 24 LPCM
- Ancillary Data
 - New ANC RTP payload
- Clock Distribution
 - IEEE 1588 PTP
 - SMPTE ST 2059-2 Profile
- Synchronisation –
 - RTP Clock source Signalling in SDP
 - RTCP Sender Reports RFC3550
- Flow Association
 - Session Description Protocol (SDP) RFC4566
- Identity (UUIDs)
 - Sources: RTCP SDES CNAME
 - Flows & Bundles: SDP URI
- Discovery
 - Multicast DNS-SD

ST2110 its parts

ST2100 IP Media Inter-Networking with Separate Essence Flows:

- ST2110-10: System Timing and Definitions (almost issued)
- ST2110-20: Uncompressed Active Video (almost issued)
- ST2110-30: PCM Digital Audio (almost issued)
- ST2110-40: Ancillary Data
- ST2110-50: 2022-6 transport
- ST2110-21: Timing
- ST2110-31: Full AES-3 Transport
Discovery and Routing

In a SDI system we know where the equipment is – and how it is connected so that the signal flows.

In IP systems equipment/devices (resources) can be anywhere and the flows need to be set up within the IP network.

Elements of the Model

Based on JT NM – SMPTE EBU VSF –see www.jt-mn.org

- Network has Nodes “attached” to it
- Nodes “deploy” Devices
- Devices “source” Sources
- Sources have “qualities” which form Flows
- Flows are made up of Grains
- Grains contain the essence

There are also a registry – a device can have sender or receiver (or both) functions and Flows can be grouped

....... It can get rather complex to visualise as every thing is virtual!
How to discover - NMOS

Network Media Open Specifications www.nmos.tv

A way of getting the connections needed in IP to be very easy to configure

A) by telling you what you have got Discovery and registration
Using multicast DNS and a Registration API

B) By giving you a means of connecting Nodes together
with flows and the grains
By a Node (simple) or Query API (registry – complex systems)
Studio Video (over IP) in the future

- Target is very clearly ST2110 and NMOS
- BUT in the mean time
- ST2022-6
- And if there seems to be bandwidth issues – use light Compression Sony mezzanine or Tico
- Have lots of Video running over say 10Gbit links!

So a good playpen / Sand box – and it works!!!!

And BBC Cardiff is specified for entirely IP infrastructure

IP for Broadcast in the WAN

- How do you get your Pictures and Sound & Metadata from one site to another?
- You can “own” Dark fibre Or Microwave links
 - expensive - often pay by bitrate times distance
 - what happens when you get “JCB strike”
- You can lease a circuit from a Telco
 - Perhaps less bitrate - But now Distance independent pricing
 - And JCB strike is (mostly) their problem.....
 - But the cheapest and future proof circuits are IP (not SDH PDH or ATM)
 - IP circuits at say 10G can be supplied more or less anywhere in UK Urban areas on a permanent basis! – and you can have your emails etc. also deliverer!
 - And you may compress to get the price down - perhaps!
Remote Working

Idea is

Why have an OB truck?

Why not get the cameras, microphones, etc. taken back to a studio where all the mixing, etc. can be done?

Saves costs – both equipment and staff expenses

Save time – things are “half the same” every time

And main Production team does not need to travel (Or have one per location)

Remote working – it’s not new!

Scenario – at short notice can we cover the local football match but the OB truck was off recording!
Remote working – example UK PL

- Each UK Premier league football ground has a BT 40G circuit
- Thus say a dozen cameras can be fed uncompressed
- Need more – then add another 40G (or 10G) or compress

- Feed via BT Tower to IMG at Stockley Park – and mix there!
- Works well - But this is a premium product - !!!!!
- See it at SMPTE UK Summer Visit 22 June

Remote Working – “on your Home connectivity”

- Problem - UKPL uses multiple 40G you have say 10 M (on a good day)
- Solution – to get you the feeds - Compress
- Problem compression takes time (and you are Live)
- Problems compression ruins the picture
- Solution - edit on Proxy and Conform/ mix on site
- Problem But we are live!!!! (But what is live ..???)
- Problem The latency of connection may be variable and different for each Camera feed! – as it is the raw internet!
- HELP!!!!!!!
- Comment – but output may not need to be “Premium quality” HD will do!
Remote Working – “on your Home connectivity”

This is a very rough idea of how it works... Don't take too literally

- Use normal cameras a micros and any output equipment ... Just adds a new Vision mixer / Audio renderer and clever storage at HD plus codecs
- Compress each video and audio with its own time stamp and send to studio
- Does not matter (too much) is each feed takes a different time to get there!
- When you say cut from one source to another the mixer/control sends source number and the stamp for each source when you did the cut i.e. METADATA
- At OB the mixer storage outputs the new frame with the new source at the time stamp you sent! - which is what as a director you saw!
- For audio it is actually just an audio renderer – combining sources with each level set – Just like ATMOS® - object audio
- NOTE you need a bigger ADSL at the OB than you do at Studio (ADSL is just that – so you are Sending UP at OB)
Weitzel IP Rules

- Every packet counts
- All it needs is just best practice
- It is complex because of interrelationships

My AES audio over IP lecture from 2012
See https://sites.create-cdn.net/sitefiles/20/9/0/209045/AoIP_How_can_it_work_AES12juns2.pdf

There is a lot more!

There is a lot going on in the technology of the moving pictures industries - and many relearning fundamentals

Today I have only looked at two areas

BUT what matters is that the technology helps and enhances the storytelling which get the money flowing in...

- technology on its own is waste of time and money

I asked one chief engineer what his Priorities were

- UHD... Practically HDR, but all the other issues of WCG HFR *
- VR and 360 deg videos (which are not the same thing) – And AR
- Remote Production
- Scalable Cross platform compliance
- IP Production *
- IMF (interoperable mastering format ST 2667)*
- DPP Specs and metadata
- Object audio
Questions ??

You have the Vision to stay to the end
- what more do you want to know!

Find this slide pack and how to join SMPTE – at www.smpte.org/uk
If your Station wants to get in touch – peter@weitzel.org
(use Subject: NaSTA <Station Name>)
Next some extra slides with Links to useful things!

Useful Links

Standards bodies
www.smpte.org/standards
www.itu.int BT 601, 709 2020 2100
www.etsi.org DVB specs etc.
Specification bodies
www.digitalproductionpartnership.co.uk
www.dtg.org
www.Amwa.tv
www.nmos.tv
Useful links

Files are made using MXF, SMPTE ST337 as a wrapper/Data model.

A particular Flavour of MXF is used in the Application specifications AS by Amwa – DPP uses AS11 as the basis.

There are other file formats using MXF – the up and coming one is IMF. See https://mrmxf.com/shorts/

And to explain all Mr MXF....

Mr MXF is SMPTE fellow and UK governor Bruce Devlin and he is looking for you to help him! https://mrmxf.com/shorts/?sponsor

Why join SMPTE - go to www.smpte.org.uk

- **Join in our success**
- Meeting others working in our industries - that what [SMPTE meetings are all about](http://www.smpte.org.uk/)
- Receiving the [Motion Imaging Journal](http://www.smpte.org.uk/) (not associate members) - full of the latest techniques and news from SMPTE sections around the World
- Participating in the [Technology relevant webcasts](http://www.smpte.org.uk/), at no Charge
- Access our archive - Look back over SMPTE's work over the past 100 years
- Attending events, [conferences](http://www.smpte.org.uk/) and [Courses](http://www.smpte.org.uk/) at member discount rates – you can easily save your subscription (and it can be offset against tax)
- Discounts on conference papers, proceedings and Standards in the [SMPTE Digital Library](http://www.smpte.org.uk/)
- Getting Preferential booking for [our meetings](http://www.smpte.org.uk/)
- Supporting those joining our industries through the [Graduate Initiative](http://www.smpte.org.uk/)
- Taking part in [standards work](http://www.smpte.org.uk/), and directing the way our industries move
- Just being an active member of the world's largest Members society for those working with the moving image, its audio and metadata - on any platform - Film, Television, Digital media
Join us and Join in

Student Members First year Free – Following Years only $10

- Go to www.smpte.org/uk and click on “Student members free” link
 https://www.smpte.org/store/product/membership-individual-student
 but choose “Pay Later” as your payment method.
 When it asks for the name of your lecturer etc. put “NaSTA Weitzel”
 (When you join, you will be asked to set up an online account you will use to access your membership benefits)

- Once you have joined, email us at membership@smpte.org.
 We will make your membership active, and send you a welcome email.

And problems email SMPTE Home office (East Coast USA)
Rgorman@smpte.org and all will happen!

AND TAKE PART _ UK meetings plus the webcasts
and by contacting any SMPTE member (via website!)

YOU have a better idea of the future than we do!!